Probabilistic procedure for wood-frame roof sheathing panel debris impact to windows in hurricanes

Thang N. Dao a, John W. van de Lindt b,⇑, David O. Prevatt c, Rakesh Gupta d

a Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA
bGary Neil Drummond Endowed Chair in Civil Engineering, Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA
cDepartment of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32611-6580, USA
dDepartment of Wood Science and Engineering, Oregon State University, Corvallis, OR 97331, USA

A R T I C L E I N F O

Article history:
Received 9 May 2011
Revised 1 November 2011
Accepted 2 November 2011

Keywords:
Light-frame wood
Hurricane
Wind force
Fragility
Windborne debris

A B S T R A C T

The assessment of losses during extreme events such as hurricanes is important for performance-based design of residential buildings. In this paper, a methodology for estimating the probability of debris impact, specifically roof sheathing panels, to windows as a result of hurricanes is introduced and applied to a series of illustrative examples. The methodology is a combination of approaches on flat plate trajectories, numerical hurricane modeling, and statistical analysis of structural capacity. Within this methodology, one can estimate the probability of impact for one or more windows in a certain house group as a hurricane approaches and passes on a deterministic track as defined by the center of its eye. The impact probability is analyzed for each hour making up the full hurricane duration rather than a single analysis using the blended (total) hurricane statistics. An illustration of the method is presented through an assessment of windborne debris impacts to windows in a house group located near the US Gulf coast using a hurricane having the same track as hurricane Katrina in 2005. As a result, the probability of each window being hit by a roof sheathing panel (RSP) during each hour of the hurricane as well as during each of the example hurricanes is presented. The results quantify the probability from hour to hour during a hurricane and will provide a more accurate estimate of the probability and timing of pressurization of buildings for total loss estimation including rainwater intrusion volumes.

1. Introduction

Over the last several years the development of performance-based design (PBD) has been a focus for the light-frame wood building research community, primarily in earthquake engineering, but is gaining popularity in wind engineering. Performance-based design is a design philosophy that provides a building owner additional design options in order to reduce losses during extreme loading events. Improving the performance of light-frame wood buildings is critical since over 80% of the total building stock in the United States and more than 90% of residential buildings in North America are light frame wood construction. A recent investigation [22] showed that financial losses for residential wood construction during hurricane Katrina were not only significant from surge but also from wind and the resulting rainwater damage, thus improving the performance of residential buildings under hurricane winds would help mitigate these losses. Losses for residential wood construction during hurricanes occur for a variety of reasons.

These include sources such as (1) water intrusion as a result of high uplift pressures on the roof system resulting in gaps but not necessarily loss of panels [4]; (2) water intrusion as a result of a loss of roof coverings and/or roof sheathing panels (Fig. 1a and b); and (3) debris impact from a failed roof sheathing panel (Fig. 1c). Heavy wind-driven rain which occurs during a hurricane can cause rain-water intrusion through breaches leading to substantial financial losses as a result of both the structure and contents damage. Pressurization of a building occurs when a window or door is breeched which, in turn, significantly increases the probability of roof sheathing panel loss. If the breech occurs early in the hurricane the probability of roof sheathing panel is higher and thus the amount of rainwater and resulting financial losses increases. Thus, for accurate computation of losses in a hurricane it is critical to know the timing of the breech, if it occurs, which is the motivation for this study. This paper focuses on a fragility methodology and subsequent probabilistic analysis of damage to residential windows during hurricanes due to impact loading from flat plate-like windborne debris, e.g. roof-sheathing panel failure resulting in flight and potential impact.

In this study, the focus was on the development of a numerical methodology to determine the probability residential window
been limited research on windborne debris with studies focusing on other aspects of wind loss modeling and related hazards have been somewhat prevalent [7,11,23–26]. Recently there was a special journal issue (Wind and Structures) that focused on windborne debris including a review of windborne debris models [9,15,16]. These existing models treat risk from windborne debris as occurring sometime during the hurricane, rather that discretizing the analysis in a deterministic fashion as in the present study. The discretized approach provides several advantages in that (1) it allows consideration of nonlinear finite element models including damage accumulation during a hurricane; and (2) it allows computation of the probable timing of the building envelope breech, thereby altering the loading model due to building pressurization, subsequently altering the loss computation.

2. Debris flight

Based on the auto-rotating flat-plate theory proposed by [10,20] developed a method to determine the trajectory of flat plates in uniform flow with application to windborne debris. This method was applied for 2-D flat plates flying in a uniform flow with aerodynamic drag, lift, and moment, expressed as:

\[
\begin{align*}
D &= \frac{1}{2} \rho A [U - \dot{x}]^2 + \dot{y}^2] C_D \\
L &= \frac{1}{2} \rho A [U - \dot{x}]^2 + \dot{y}^2] (C_L + C_{LA}) \\
M &= \frac{1}{2} \rho A [U - \dot{x}]^2 + \dot{y}^2] (C_M + C_{MA})
\end{align*}
\]

where \(A \) is the area of the plate, \(\rho \) is the air density, \(I \) is the chord length, \(U \) is the wind velocity, \(x \) and \(y \) are the coordinates which indicate the location of the plate, and \(C_D, C_L \) and \(C_M \) are the aerodynamic drag, lift and moment coefficients, respectively, and \(C_{LA}, C_{MA} \) are the autorotation lift coefficient and autorotation pitching moment coefficient, respectively. These coefficients must be determined experimentally using a wind tunnel. The plate trajectories are calculated by numerically integrating the equations of motions derived from forces acting on the plate [20]:

\[
\begin{align*}
\dot{x} &= \frac{1}{2} \rho A [U - \dot{x}]^2 + \dot{y}^2] (C_D \cos \beta - (C_L + C_{LA}) \sin \beta) \\
\dot{y} &= mg - \frac{1}{2} \rho A [U - \dot{x}]^2 + \dot{y}^2] (C_D \sin \beta + (C_L + C_{LA}) \cos \beta) \\
\dot{\theta} &= \frac{1}{2} \rho A [U - \dot{x}]^2 + \dot{y}^2] (C_M + C_{MA})
\end{align*}
\]

where \(g \) is the acceleration due to gravity, \(m \) is the mass, \(I \) is the moment of inertia, \(\beta = \tan^{-1} \left(\frac{\dot{y}}{\dot{x}} \right) \); and a dot denotes a derivative with respect to time \(t \). The coordinates and forces acting on a plate are shown in Fig. 2.

Based on the flat plate trajectory theory proposed by Tachikawa [12] investigated plate type windborne debris by performing wind tunnel experiments at full scale. Their study also investigated the aerodynamic characteristics of plate-type debris, and two empirical equations were proposed for estimating velocity and position of the plate at a given flight time:

\[
\begin{align*}
D &= \frac{1}{2} \rho A [U - \dot{x}]^2 + \dot{y}^2] C_D \\
L &= \frac{1}{2} \rho A [U - \dot{x}]^2 + \dot{y}^2] (C_L + C_{LA}) \\
M &= \frac{1}{2} \rho A [U - \dot{x}]^2 + \dot{y}^2] (C_M + C_{MA})
\end{align*}
\]
\[u = 1 - e^{-\sqrt{3}Kx} \]
\[Kx = 0.456(Kt)^2 - 0.148(Kt)^3 + 0.24(Kt)^4 - 0.0014(Kt)^5 \]

where \(u \) is the horizontal non-dimensional plate velocity, which is the ratio between the average velocity of the plate \(u_0 \) and the wind velocity \(U; x \) is the dimensionless horizontal displacement of the plate; \(K \) is the Tachikawa number; \(t \) is non-dimensional time \((f = \frac{ft}{\sqrt{U}}) \).

Visscher and Kopp [27] also conducted a series of experiments in a wind tunnel for roof sheathing panel trajectories and showed that slight differences in the initial conditions at the time of roof sheathing panel failure resulted in very different observed trajectories. This is again an argument for use of a discretized risk model since the initial conditions of the plate can change during the hurricane. In the present study, the initial angle of a roof sheathing panel is calculated based on wind direction and the roof slope for each house. It is assumed that the roof sheathing panel is at rest on the roof when it fails from wind loading.

From experimental data, [8] estimated the aerodynamic coefficients used in the plate equations of motion for numerical use in computing plate trajectories. The results were then compared with Tachikawa’s experiments and their wind tunnel test for plate trajectories. The comparison indicated generally good to excellent agreement. Lin et al. [13] also developed empirical equations to estimate horizontal displacements and velocities for different types of windborne debris: a compact object, a sheet and a rod. With these empirical equations, Lin and Vanmarcke [14] developed an approach for windborne debris risk assessment. Their study focused on risk assessment based on the landing location of debris during hurricanes (horizontal displacement only). It is reasonable for risk assessment of building coverings, in general. For risk assessment of window impact from windborne debris, the vertical displacement of windborne debris must also be considered.

In the present study, estimation of the plate trajectories are made in order to check if a plate impacts a downstream target, therefore both the horizontal and vertical position of the plates versus time need to be identified. For this reason, the original form of the equations of motion for the plate will be used to determine the plate trajectory in the present study. Building on the work of [2,8,13] summarized and proposed the debris flight equations for a plate, which are presented in their most general form and include wind velocity fluctuation and assumed aerodynamic coefficients using continuous functions based on the angle of wind attack, \(\beta \), on the plate:

\[C_D = 0.75(1 + 0.65 \sin(2\beta - \frac{\pi}{2})) \]
\[C_l = 1.2 \sin(2\beta) \]
\[C_{LM} = K_{LM} \frac{\overline{\sigma} \cos(\beta)}{\overline{\sigma}} \]
\[C_M = 0.2 \cos(\beta)(C_D \sin(\beta) + C_l \cos(\beta)) \]
\[C_{MA} = K_{MA} (1 - \frac{\overline{\sigma}}{\overline{\sigma}_m}) \frac{\overline{\sigma}}{\overline{\sigma}_m} \]

where \(\overline{\sigma}_m \) is maximum numerical value of \(\overline{\sigma} = \frac{\sigma}{\overline{\sigma}_m} \), and \(\overline{\sigma}_m \) is taken to be 0.64; \(K_{LM} \) and \(K_{MA} \) are constants and taken as 0.4 and 0.12, respectively.

3. Numerical hurricane model

The simple numerical hurricane model used in this study considers the location of a community, or subdivision, of houses in proximity to a hurricane path and the subsequent wind field model. In order to estimate the trajectories of windborne debris, the wind velocity and wind direction for each hour at the location of the house group being considered needs to be determined. This can be accomplished by applying the Rankine vortex model [17] as follows:

\[V_x = \frac{V_x r}{R} \text{ for } r < R; \quad \text{and } V_x = \frac{V_x R}{r} \text{ for } r \geq R \]

where \(V_x \) is the tangential (circumferential) component of the wind velocity in a hurricane to the hurricane eye center \(O \), \(R \) is the radius to maximum velocity \(V_x \); and \(r \) is the distance between the hurricane eye and the location where the velocity, \(V_x \), is being computed.

In this case \(V_x \) and \(V_z \) refer to the upper-level (gradient height) wind velocity or wind velocity at the same height and in the same terrain category, e.g. Eq. (6) is used to convert wind velocity between locations during a hurricane but not between different heights or different terrain categories. The direction of \(V_x \) is calculated based on the relative location of the house group being considered with respect to the hurricane eye:

\[\vec{e}_r = \vec{e}_x \times \vec{e}_z \]

where \(\vec{e}_x \) is unit vector in the direction of the wind velocity \(V_x \), \(\vec{e}_z \) is the radial unit vector, and \(\vec{e}_z \) is unit vector for the Z axis all of which is described graphically in Fig. 3. The direction and value of wind velocity \(V \) is then calculated by adding the two velocity components:

\[\vec{V} = \vec{V}_r + \vec{V}_o \]

where \(\vec{V}_o \) is the velocity of the hurricane eye. A power law or log law [19] should be used to determine the wind velocity, \(U \), at mean-roof-height level before substituting into Eq. (2) to estimate the trajectory of the windborne debris.

The track of the hurricane and the location of the house group are shown in Fig. 4. For each hour of the hurricane, the location and distance of the hurricane with respect to the house group, \(r \), is calculated. Then the wind velocity and wind direction at the house group location are determined using Eqs. (6) and (7), and the trajectories of the windborne debris are determined using Eq. (2).

4. Wind load and dead load modeling

To estimate the probability of a window in a certain house group being impacted by a panel lost from another house, the probability of a panel failure must first be determined. The limit state describing roof panel uplift failure involves wind load and dead load and can be expressed as [6]:

\[G(R, W, D) = R - (W - D) \]

where \(R \) is the resistance of the roof panel to uplift, \(W \) is the uplift wind load and \(D \) is the dead load on the panel. The un-factored wind load applied on low-rise building components and cladding can be computed as:

\[W = q_a [GC_0 - GCP] \]

where \(q_a \) is velocity pressure evaluated at mean roof height, \(G \) is gust factor, \(C_0 \) is external pressure coefficient and \(CP \) is internal pressure coefficient. The velocity pressure is calculated following [1] as:

\[q_a = 0.00256K_dK_pK_vV^2 \]

Fig. 3. Wind velocity and wind direction during a hurricane.
where K_h is the exposure factor, K_t is the topographic factor (taken equal to unity so as not to make the results dependent on local topography surrounding the building); and K_d is the directional factor (in this study, because the wind direction is determined from Eq. (7) and (8) and therefore not considered as a random variable, K_d is set to unity); and V is wind velocity, i.e. 3-s gust wind speed. The specifics of these random variables will be expanded on in the fragility section of this paper. The statistics for dead load and wind load coefficients and factors are listed in Table 1.

In this study, because the pressure coefficients were taken from existing wind tunnel test data with different wind directions, thus the mean value of K_h was taken as 1 (already accounting for the exposure factor); and the mean values of G_p were selected from the peak values of pressure coefficient time series from wind tunnel test data. Both G_p and G_{pi} values in Table 1 are converted for use to 3-s gust wind speed, and will be described in more detail in the illustrative example section of this paper. The coefficient of variation for each random variable listed in Table 1 is based on the work of [6].

5. Construction of fragilities

The objective here is to construct a fragility for a window in a certain house group being hit by a roof sheathing panel (RSP) that is lost from the roof of another house during a hurricane. In general, the fragility for a certain limit state can be described by $G(X) < 0$, where X is a vector of basic random variables that describes the limit state condition, and is defined through the expression of the probability of that limit state as [6]:

$$ P[G(X) < 0] = \sum_y P[G(X) < 0 | D = y] P[D = y] $$

(12)

in which D is random variable describing the intensity of the demand on the system. The term $P[D = y]$ defines the natural hazard probabilistically. $P[G(X) < 0 | D = y]$ is the conditional limit state probability given that $D = y$, and is defined as the fragility.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>Coefficient of variation (COV)</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead load D</td>
<td>1.6 psf (0.077 kPa)</td>
<td>0.10</td>
<td>Normal</td>
</tr>
<tr>
<td>K_h (exposure B)</td>
<td>1</td>
<td>0.21</td>
<td>Normal</td>
</tr>
<tr>
<td>G_p (C&C)</td>
<td>Wind tunnel tests</td>
<td>0.12</td>
<td>Normal</td>
</tr>
<tr>
<td>G_{pi}</td>
<td>0.15 (closed)</td>
<td>0.05</td>
<td>Normal</td>
</tr>
<tr>
<td>0.55 (partially closed)</td>
<td>0.05</td>
<td>0.05</td>
<td>Normal</td>
</tr>
</tbody>
</table>

In this study, the limit state is defined as a window being impacted by an RSP during a hurricane. It is assumed that the target window will be broken when hit by any RSP during the hurricane. Further study is needed to include a glass failure, i.e. capacity model, and impact loading model. Obviously if the window is protected by shutters (plywood, oriented strand board (OSB), or metal), the assumed breakage is not an accurate model. The conditional random variables are the maximum 3-s gust wind speed occurring during that hurricane and the velocity of the hurricane eye. The fragility is now described as:

$$ F_l = P[Window\ hit|V_H = V_H] $$

(13)

where $V_H = [V_{VH}]^T$ is the vector of random variables representing the maximum tangential wind velocity in the hurricane and hurricane eye velocity, respectively, which are described in Eqs. (6)–(8), respectively. The probability of a target window (in a certain house group) being hit by a RSP during a hurricane depends on the arrangement of that house group, the design of each house in that group (e.g. nail patterns on each RSP which relates to failure probability of an RSP during a hurricane). It is assumed that the target window, and the characteristics of the hurricane which are described numerically by Eqs. (6)–(8).

In this study, it is assumed that the track of the hurricane and the distance R between the hurricane eye and the location where V_H occurs are known and are deterministic. When the hurricane moves on its track, the wind velocity and wind direction at the location of the house group change gradually (due to the change in relative position between the house location and hurricane eye, see Eq. (6)–(8), therefore the RSPs will have different trajectories if they fail at a different point in time during the hurricane. In previous models this can only be accounted for statistically over the entire hurricane as a single value. In the present study this was accounted for by discretizing the hurricane into one hour segments to better account for this effect. Thus, it is easier to first estimate the probability of the target window being hit by the RSPs for each hurricane hour, then compute the probability of the target window being hit during the hurricane as:

$$ F_j = \sum_{i=1}^{h} P_i[Window\ hit|V_H = V_H] $$

(14)

where h is the duration of the hurricane in hours, $P_i[Window\ hit|V_H = V_H]$ is the probability of the target window being hit during the ith hour of the hurricane.
5.1. Probability of the target window being hit during each hurricane hour

It is assumed that in the ith hour of the hurricane, the probability of the jth RSP in the house group hitting the target window is \(P_q^{\text{hit}} \). Then, the probability of that panel not hitting the target window during the ith hour of the hurricane is, of course, \(1 - P_q^{\text{hit}} \). The probability that none of the RSPs in the house group hit the target window will then be:

\[
P_i = \prod_{j=1}^{N} \left(1 - P_j^{\text{hit}}\right)
\]

where \(n \) is the number of RSPs that have trajectories during the ith hurricane hour that hit the target window. The probability of the target window being hit by at least one RSP during the ith hurricane hour is then:

\[
P_i \left[\text{Window hit} | \mathbf{V}_h = \mathbf{v}_h\right] = 1 - P_i
\]

5.2. Probability of an RSP hitting the target window during the ith hurricane hour, \(P_q^{\text{hit}} \)

In order to estimate the probability that a RSP hits the target window, the wind velocity and wind direction for each hour at the location of the house group must first be determined using Eqs. (6)–(8). Then the trajectories of that RSP are determined using the method proposed by Tachikawa [20] and the aerodynamics summarized by Baker [2]. It should be noted that the \(P_q^{\text{hit}} \) is calculated for each hurricane hour, and it is not known at what moment during the hour the panel will fail. The trajectory of the RSP is a function of when it fails during the hurricane (due to the change in the wind direction and wind velocity). Therefore the trajectories are calculated for discrete points in time during each hurricane hour. From the calculated trajectories of that RSP during each hour of the hurricane model, the portion of the time during hurricane hour \(i \) that the RSP can hit the target window denoted as \(P_q^i \) and can be calculated as:

\[
P_q^i = \frac{\Delta t_{\text{hit}}}{\Delta t_i}
\]

where \(\Delta t_{\text{hit}} \) is the initial angle between two roof-sheeting panel trajectories that bound the geometry of the target window, where \(\alpha_i \) is the initial angle between roof-sheeting panel trajectories at the beginning and at the end of a hurricane hour (see Fig. 5).

If \(P_q^i > 0 \) (this means that a RSP can hit the target window during that hour, provided it fails structurally), the probability of that RSP failing during that hour, and it is termed \(P_q \). The probability that the RSP hits the target windows during the ith hurricane hour is:

\[
P_i^{\text{hit}} = P_q \cdot P_q^i
\]

5.3. Probability of a RSP failing during the ith hurricane hour, \(P_q^i \)

From the limit state describing roof panel uplift failure, namely Eq. (9), one can determine the probability of a panel failing due to wind loading during the ith hurricane hour as:

\[
P_q^i = P(G(X) < 0 | \mathbf{V}_h = \mathbf{v}_h)
\]

where \(X = [R,W,D] \) is the vector of random variables mentioned in Eq. (9) and present for resistance, wind load and dead load, respectively. The wind load statistics follow Eq. (10) and random variables are listed in Table 1. Recall that in Table 1, there are two different values of \(G_{P_{57}} \) which leads to two different RSP failure states. Eq. (19) can be used to calculate the probability of failure of each RSP in the structure for closed and partially closed states, and are denoted as \(P_q^{\text{hit}} \) and \(P_q^{\text{hit}} \) (\(i = 1,2, \ldots, H; j = 1,2, \ldots, N \)) where \(H \) is number of hurricane hours and \(N \) is number of panels in the structure. It is assumed that if a RSP fails, it fails in either the closed state or partially closed state. Then, it follows logically that:

\[
P_q^i = P_q^{\text{hit}} + P_q^{\text{hit}}
\]

where \(P_q^{\text{hit}} \) and \(P_q^{\text{hit}} \) are the probability of RSP fails in closed state and partially closed state, respectively. These probabilities can be estimated as:

\[
P_j^{\text{hit}} = P_{j,\text{hit}} P_{j,\text{sur}} P_{j,\text{sur}}\frac{1}{C_0}
\]

\[
P_j^{\text{hit}} = P_{j,\text{hit}} P_{j,\text{sur}} P_{j,\text{sur}}\frac{1}{C_0}
\]

where \(P_{j,\text{hit}} \) is the probability of the building being in a closed state and \(P_{j,\text{sur}} \) is probability of the building being in a partially closed state. \(P_{j,\text{sur}} \) is the probability of panel \(j \) surviving during the first (\(i - 1 \)) hurricane hours. \(P_{j,\text{hit}} \) and \(P_{j,\text{sur}} \) are estimated from the probability that at least one window in windward wall was hit before the ith hurricane hour. It is assumed that if none of the windows in the windward wall are hit before the ith hurricane hour, the house will be in a closed state; otherwise the house will be in a partially closed state. For the first hurricane hour, \(P_{j,\text{hit}} = 1; P_{j,\text{sur}} = 0 \). After the first hurricane hour, \(P_{j,\text{hit}} \) and \(P_{j,\text{sur}} \) are calculated as:

\[
P_{j,\text{hit}} = \prod_{k=1}^{W} \prod_{l=1}^{k-1} \left(1 - P_{j,\text{hit}} \left[\text{Window hit} | \mathbf{V}_h = \mathbf{v}_h\right]\right)
\]

\[
P_{j,\text{sur}} = 1 - P_{j,\text{hit}}
\]

where \(P_{\text{hit}} \left[\text{Window hit} | \mathbf{V}_h = \mathbf{v}_h\right] \) is the probability of window \(q \) being hit during the 4th hurricane hour, \(W \) is the number of windows in windward walls considered during ith hurricane hour. The probability \(P_{j,\text{sur}} \) can be estimated by equation:

\[
P_{j,\text{sur}} = P_j^{\text{hit}} + P_j^{\text{hit}}
\]

where \(P_{j,\text{hit}} \) is the probability that panel \(j \) survives in a closed building state during (\(i - 1 \)) hurricane hours and \(P_{j,\text{sur}} \) is probability that panel \(j \) survives in a partially closed building state during (\(i - 1 \)) hurricane hours; which can be evaluated by equations:

\[
P_{j,\text{sur}} = P_{j,\text{hit}} P_{j,\text{sur}} P_{j,\text{sur}}\frac{1}{C_0}
\]

\[
P_{j,\text{sur}} = P_{j,\text{hit}} P_{j,\text{sur}} P_{j,\text{sur}}\frac{1}{C_0}
\]

6. Illustrative example and discussion

Now, consider an illustrative house group with its location shown on the map in Fig. 4, which is assumed to be in a suburban terrain as defined by [1]. For illustrative purposes, it is assumed that there are nine identical houses and there are four large windows in each house (one window on each side), making a total of 36 windows in the example house group. The house group layout is shown in Fig. 6 with the houses numbered for later discussion. Each house is 18.2 m (60 ft) by 9.1 m (30 ft) in plan with a mean roof height of 4.4 m (14.3 ft) having a roof overhang of 0.3 m (1 ft) beyond the wall.

For illustrative purposes, it is assumed that the hurricane follows the track taken by hurricane Katrina in 2005 which is shown in Fig. 4, but it should be noted that the wind field of hurricane Katrina is not used, just the path. The hurricane eye velocity
is assumed to be 22.4 kph (14 mph); the maximum wind velocity \(V_e \) during the hurricane occurs at \(R = 28.8 \text{ km} \) (18 miles) from the hurricane eye (\(V_e \) is measured at the height of 33 ft or 10 m in open terrain). The analyses for different maximum wind velocities \(V_e \) were performed to observe the effects of hurricane category on window damage in the house group. The corresponding wind velocity, \(V_r \), in open terrain at the house group location is determined for each discretized hour of the hurricane using Eq. (6) in which the variable \(r \) depends on the location of the hurricane at the mean time within each hour. The total wind velocity at the house group location is calculated using Eq. (8), which is then converted into 3-s gust wind velocity at the mean roof height (4.4 m or 14.3 ft) in suburban terrain using equation [19]:

\[
V_{mrh, sub} = V_{10m, open} \ln \left(\frac{z_{mrh}}{z_{0, sub}} \right) \ln \left(\frac{z_{10m, open}}{z_{0, open}} \right)
\]

(28)

where \(V_{mrh, sub} \) is the 3-s gust wind velocity at mean roof height in suburban terrain (at the location of the house group), \(V_{10m, open} \) is the total wind velocity at the height of 10m in open terrain determined by Eq. (8); \(Z_{mrh} = 4.4 \text{ m} \) is mean roof height; \(Z_{0, sub} = 0.22m \) is the roughness length in suburban terrain; \(Z_{0, open} = 0.02m \) is roughness length in open terrain; \(Z_{g, open} = 274.43 \text{ m} \) is the gradient height in open terrain and \(Z_{g, sub} = 365.76 \text{ m} \) is the gradient height in suburban terrain (ASCE7-05).

With the wind velocity, \(V_{mrh, sub} \), at the house group for each hurricane hour known, all RSP trajectories at discrete points in time are calculated, then each panel’s trajectories are checked to determine if they would hit any target window for those points in time during that specific hurricane hour (recall from equation (17) that during that hurricane hour, one can see that there may be a portion of time that if the RSP fails, its trajectory will not hit the target window). If there is a hit, then the portion of time during that hurricane hour that the panel may hit the target window (if it is failed) is estimated (see Fig. 5). The probability of each panel hitting a target window is then calculated using Eq. (18), and the probability of a target window being hit during each hurricane hour is then determined using Eq. (16). Fig. 7 shows the trajectories of the RSPs that may hit the windows in the house group during a hurricane with \(V_e = 145 \text{ mph} \). In this figure, only the RSP trajectories that hit the windows in the house group are shown, i.e. there are many trajectories that fall short of the windows or hit elsewhere. From these RSP trajectories, the portion of time that the RSP may hit the windows is calculated for each hurricane hour (i.e. there is some portion of time during each hurricane hour that the RSP may not hit the target window due to wind direction changes as the hurricane approaches on its track).

6.1. Wind tunnel data for pressure coefficient on the roof

In order to estimate the probability of RSP failure for each hurricane hour, wind load statistics for each RSP for each hour within the hurricane are determined. As the hurricane approaches on its track, the wind direction at the house group location changes gradually and can be determined by Eq. (8). Therefore the wind directionality factor \(K_d \) in Eq. (11) was taken as unity and not considered to be a random variable. Wind tunnel test data from testing conducted at Clemson University [5,18] was used to estimate the mean value of the pressure coefficient on each RSP. In that study a residential building that was nominally identical to the building used in this example was modeled as a 1:50 scale rectangular, gable roof structure with 387 pressure taps installed on the roof. The dimensions and pressure-tap layout are shown in Fig. 8. The pressure at each tap on the roof is recorded as a time series for five wind directions (0, 45, 90, 135 and 180), from which the pressure coefficient time history can be calculated as...
\begin{align}
C_p(t, \theta)_i &= \frac{P_{i}(t, \theta)}{P_{\text{ref}}(\theta)} \quad (29) \\
P_{\text{ref}}(\theta) &= \frac{1}{2} \rho V_{\text{ref}}^2 \quad (30)
\end{align}

where \(P_{i}(t, \theta)\) is the pressure at tap \(i\) at time \(t\) for wind direction \(\theta\), \(P_{\text{ref}}\) is the reference pressure at the mean roof height, \(\rho\) is the density of air, and \(V_{\text{ref}}\) is the mean velocity of air at the mean roof height during the sample. This mean wind velocity, \(V_{\text{ref}}\), is equivalent to the one-hour wind velocity averaging time in full scale.

The pressure tap locations and tributary area of each tap for each RSP can then be determined based on Fig. 8. Based on the tributary area and the pressure over each tap, the time series for forces due to wind pressure are calculated at each pressure tap. Then the time series of the force acting on each panel is determined by summing all the forces at pressure taps on that RSP. The peak value of the time series force acting on each panel is selected to calculate wind pressure and then the wind pressure coefficient for that RSP. This pressure coefficient is then set as the mean value for the random variable, \(GC_p\), in Eq. (10) when computing the probability of RSP failures for each hurricane hour. Note that the pressure coefficient for the overhang is different than the other roof portion which was included in the calculations. The pressure coefficients for the wind directions that were not tested by Datin and Prevatt [4] were interpolated from the five wind directions that were tested.

7. Results and discussions

Because the house group in this example is quite small and only one type of windborne debris is considered, there are relatively low probabilities for the RSP’s impacting windows. The discussion will focus more on the trend and the effect of wind velocity and wind direction change during a hurricane. The logic can eventually be extended to include other types of debris making the method truly applicable, but is beyond the scope of this study.

Fig. 9 shows the probability that window #14 (the south window of house #4) is hit for each hurricane hour and for two different RSP capacities (different nail patterns) if \(V_h = 145\) mph. One can see that the probability of window #14 being hit is much higher with an RSP capacity of 33 psf than with that of 69 psf, as would be expected. Here the RSP capacity of 33 psf represents a nail pattern of 6/24 (6 inches between edge nails and 24 inches between field nails) which is intended to be representative of poor construction, i.e. missing field nails. The 69 psf RSP capacity is representative of a nail pattern of 6/12, which is standard construction practice in coastal areas of the United States. These roof sheathing capacities were estimated using a finite element model with a nonlinear nail model developed by [3]. It should be noted here that the highest probability of hitting window #14 is during the second hour of the hurricane, but this does not align with the highest wind velocity which occurs during the third hour of the hurricane. The reason is due to the change in wind direction as the hurricane approaches on its track. Also, because the probability of windows being hit during the hurricane does not change gradually even though the wind velocity model of the hurricane at the house group location does change gradually. This example was analyzed for the five most susceptible hours of the hurricanes for illustrative purpose.

Fig. 10 presents the probability of each window in the house group being hit during the hurricane with \(V_h = 145\) mph. In Figure 10, the results for all 36 windows in the house group are presented. It should be noted that windows #1–4 (in the order: north, south, east, west for house #1–6 and in the order: west, east, north, south for the house #7–9) belong to house #1, windows #5–8 belongs to house #2 and so on (each house has four windows). From inspection of Fig. 10, it can be seen from the results that the windows in houses #4 and #5 are the most susceptible to the RSP impact generated by the hurricane with \(V_h = 145\) mph because these houses are in the downwind region. Windows #1 and #13 have no risk of RSP impact during the hurricane (these windows are located along the leeward walls of the houses). Finally, houses #7, #8

Fig. 8. Pressure-tap and roof sheathing panel layouts [5].
and #9 are safer from RSP impact generated from this subgroup of houses during the hurricane because they are in an upwind area. It is clear from these results that the windows in the windward walls in downwind sides are most susceptible to an RSP hit, as one would expect.

In Fig. 11, the probability of window #14 being hit during the hurricane is presented for different maximum wind velocities, V_R. It can be seen from the results that the highest probability of window #14 being hit during the hurricane is when the hurricane is modeled with a $V_R = 145$ mph for both RSP with nail pattern 6'/24' and nail pattern 6'/12'. When the hurricane has a high V_R, the probability that window #14 is hit by RSPs is lower because the RSPs fly farther in the high velocity wind field and land outside of the house group. However, this does not necessarily mean that window #14 would always be safer with a stronger hurricane. Within a stronger hurricane, heavier types of debris (such as compact or bar objects) may be generated, and their trajectories may fall well within the house group area leading to higher risk of impact to the target windows. In addition, the illustrative house group is relatively small in this study. It can be seen from Fig. 11 that the probability of window #14 being hit by a RSP has different trends with V_R between the two nail patterns. Because the RSP with nail pattern 6'/24' has a high failure probability in high winds and that probability does not change significantly with V_R greater than 145 mph. Therefore the probability of window #14 being hit by a RSP depends significantly on the number of trajectories able to hit it. While the RSP with the nail pattern 6'/12' has higher capacity, therefore the probability of window #14 being hit by a RSP depends on both the RSP failure probability and the number of RSPs able to hit the window with their trajectory.

From the probability of each window being hit during the hurricane, one can calculate the probability of at least one window, two windows, three windows, etc. being hit during the hurricane using a statistical combination. Fig. 12 shows the probability that at least one window in the house group is hit during the hurricane. Again, the probability of at least one window in the house group being hit has different trends between the two nail patterns as discussed earlier.
8. Conclusions and recommendations

In this study, a methodology for estimating the probability that windborne roof sheathing panels impact windows in a house group during a hurricane was introduced. The method combined a recent study on windborne debris trajectory, numerical hurricane modeling, and nonlinear static analysis of roof sheathing capacity by finite elements as well as wind loading on the roof. The numerical hurricane model gives the wind velocity and wind direction at the house group location for each hour as the hurricane approaches on its track. From the wind velocity and wind direction estimated, the windborne debris trajectories are determined for each discretized hour of the hurricane. Based on the statistics of the roof sheathing panel as well as wind loading on the roof, a statistical method was presented to estimate the probability of a roof sheathing panel hitting a target window during each hour of the hurricane as well as during the entire hurricane. A single site, or hypothetical housing development, was used as an example to illustrate the methodology described herein. However, in this example, twenty different peak wind velocities were used to represent twenty different examples in order to identify logical trends and demonstrate that the method is working. Thus, each example does differ significantly which further illustrates the nature of the debris flight problem. In the examples, a deterministic hurricane path was used (the same path as hurricane Katrina, 2005).

The results showed that the highest probability of hitting a window does not align with the highest wind velocity during a hurricane, mainly due to the change in wind direction as the hurricane approaches on its track. This is also the reason that the probability of windows being hit during the hurricane does not change gradually even though the wind velocity model for the hurricane wind field at the house group location does change gradually. The most damaging wind velocity for a hurricane was also computed for a specific window, which is not necessarily caused by the hurricane wind field model with the highest wind velocity, because the RSPs typically fly further in higher winds and may land beyond the houses. However, even though the probability of a particular window in a house group being hit does not necessarily coincide with the strongest winds in a hurricane, the probability of at least one window being hit within the entire group of homes is highest at the maximum wind speed in the hurricane, again, as might be expected.

Fig. 11. Probability of window #14 being hit during the hurricane.

Fig. 12. Probability of at least one window in the house group being hit.
This methodology represents one major component within the broader framework of performance-based wind engineering for residential buildings. The applicability of the methodology presented in this paper is its ability to provide a more accurate measure of damage probability and the resulting loss due to debris impact, including the location and approximate timing of the impacts. The timing of the breech results in pressurization, thereby altering the probability of roof sheathing panel loss and altering the volume of rainwater intrusion and losses. For more details of how the method is applied in hurricane loss analysis for residential structure, readers can refer to [4].

Acknowledgements

The material presented in this paper was based upon work partially supported by the National Science Foundation under Grant No. CMMI-0800023 to the University of Florida with a subcontract issued to the second author. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References